首页 新闻正文

微分流形_微分流形初步

YIYI1111 新闻 2022-10-01 01:53:23 6 0 微分流形

本文来跟大家聊聊微分流形,以下是关于微分流形的信息希望能帮助您找到您想要的资讯。

本文目录一览:

微分流形是大几的课

一般来说微分流形是大三的课。微分流形(differentiable manifold),也称为光滑流形( *** ooth manifold),是拓扑学和几何学中一类重要的空间,是带有微分结构的拓扑流形。 微分流形是微分几何与微分拓扑的主要研究对象,是三维欧式空间中曲线和曲面概念的推广,可以有更高的维数,而不必有距离和度量的概念。

光滑函数

流形M上的实数值连续函数f:M →R是一个光滑函数,如果对每一个相容的坐标卡ρ:U→M, f(ρ):U→R是一个U上的光滑函数。因为坐标卡之间的坐标变换是光滑映射,这是一个良好的定义。特别的,光滑函数可以看成一种0阶张量场。

什么是微分流形

微分流形

光滑流形(英语: *** ooth manifold)微分流形,或称 C∞-微分流形(differential manifold)、C∞-可微流形(differentiable manifold)微分流形,是指一个被赋予微分流形了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是 C∞ 类的微分流形。可微流形在物理学中非常重要。特殊种类的可微流形构成了经典力学、广义相对论和杨-米尔斯理论等物理理论的基础。可以为可微流形开发微积分。可微流形上的微积分研究被称为微分几何。

历史

微分几何(differential geometry)作为一个独特的学科的出现一般归功于高斯(Carl Friedrich Gauss)和黎曼( Bernhard Riemann)。黎曼在哥廷根的著名的康复讲座中描述了多个面向。他通过在一个新的方向上改变给定对象的直观过程激发了多方面的想法,并且预先描述了协调系统和图表在随后形式发展中的作用:

在一个概念下的事例如果构成n维流形,一个流形的特色可以简单表示其属性,则化简的结果必然是有限个数字,…… -波恩哈德·黎曼的就职演说《论作为几何学基础的假设》

物理学家马克士威(James Clerk Maxwell)和数学家库尔巴斯托罗(Gregorio Ricci-Curbastro)和齐维塔(Tullio Levi-Civita)的成果导入了张量分析和广义协变性的概念,它将内在几何属性识别为关于协调变换的不变量。这些想法在1912年爱因斯坦发展广义相对论理论时取得关键性的应用。外尔(Hermann Weyl)于1912年给出了微分流形的一个内在的定义。1930年代,该课题基础性方面的工作被哈斯勒·惠特尼(Hassler Whitney)等人厘清,使得从19世纪下半叶起开始发展起来的相关的直觉知识变得更精确,并通过微分几何和李群使微分流形的理论得到进一步的发展。

C -可微流形的定义

设是自然数,-维拓扑空间被称为是-维可微流形,如果,

为豪斯多夫空间

被-维坐标邻域所覆盖,换句话说,存在中的-维坐标邻域族,使得

满足的任意,其坐标转换

为一个到的映射。

注意:每个座标邻域都是流形中的开 *** 。

当第三个条件中的座标变换改成是光滑映射(代表可无限次微分)时,满足这三条件的称为光滑流形,写作流形微分流形;当座标变换不是可微映射,仅是连续映射时,满足这三条件的称为拓扑流形,写作流形。

图册

拓扑空间X上的图册称为卡(chart)的{(Uα, φα)}的 *** ,其中Uα是覆盖 X的开放 *** ,并且对于每个索引α

是Uα在n维真实空间的开放子集上的同胚。图册的转移映射(transitionmap)功能是

以图册来定义流形的概念是由夏尔·埃雷斯曼于1943年所提出。每个拓扑流形都有一个图册。Ck-atlas是一个图册,其转换图是Ck。拓扑流形具有C0-atlas,并且通常Ck-流形具有Ck-atlas。连续图册(continuous atlas)是C0图册,平滑图册是C∞图册,分析图册( *** ytic atlas)是Cω图册。

微分流形的概念

参见条目:流形

具体说来,设M是一个豪斯多夫拓扑空间。U是M微分流形的开集,h是U到n维欧氏空间R的开集(常取为单位球内部或立方体内部等等)上的一个同胚映射,则(U微分流形,h)称为一个坐标图,U称为其中点的一个坐标邻域。设M为开集系{Uα}所覆盖,则(Uα,hα)的 *** 称为M的一个坐标图册。如果M的坐标图册中任何两个坐标图都是C相关的,则称M有C微分结构,又称M为n维的C微分流形。C相关是指流形M上同一点的不同坐标之间的变换关系是C可微分的(k=0,1,…,∞或ω),依通常记号C表示解析函数。具体来说, 如p∈Uα∩Uβ,(x,)(x)(i=1,…,n)分别是p在两个坐标图(Uα,hα),(Uβ,hβ)下的(局部)坐标,即那么它们之间的关系式可表为而ƒ关于x(j=1,2,…,n)具有直到k次的连续导数。k=0时,M是拓扑流形;k0时,就是微分流形;k=ω时,是解析流形。C流形又常称为光滑流形。如果微分流形M是一个仿紧或紧致拓扑空间,则称M为仿紧或紧致微分流形。如果可选取坐标图册使微分流形M中各个坐标邻域之间的坐标变换的雅可比行列式都大于零,则称这个流形是可定向的。球面是可定向的,麦比乌斯带是不可定向的。

同一拓扑流形可以具有本质上不同的微分结构。米尔诺(John Milnor)首先发现作为一个拓扑流形,七维球面上可有不同于标准微分结构的怪异微分结构。后来弗里德曼(Michael Freedman)等得出如下的重要结果:四维欧氏空间中也有多种微分结构,这与其他维数的欧氏空间只有惟一的微分结构有着重大区别。

今天微分流形和微分流形初步的相关消息先聊到这里,感谢您百忙之中来阅读本文内容,更多关于微分流形初步、微分流形的资讯别忘了在本站进行搜索查找喔。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

本文链接:http://www.auto-bots.net/post/7362.html

发表评论

评论列表(0人评论 , 6人围观)
☹还没有评论,来说两句吧...